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Hadronic modes in the quark plasma with an internal symmetry
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Abstract. We show that requiring the quark partition function to be color singlet in the SU(3) color gauge
group leads to reordering of the thermodynamic potential in terms of the colorless multiquark modes (qq̄,
qqq, q̄q̄q̄, · · ·) at any given temperature. These color-singlet structures are not bound states in a real sense,
rather they are a combination of constituent quarks only. In accord with the “preconfinement” property of
QCD, under a suitable confining mechanism, these could evolve into color-singlet hadrons/baryons at low
temperatures. At fairly high temperatures, these multiquark color-singlet structures exist in the plasma
as hadronic modes, just as in the more familiar low-temperature phase. This suggests that there exists a
strong color correlation in the plasma at all temperatures.

The success of the quark model, quantum chromodynam-
ics (QCD), and the nonobservability of the free partons
(q, q̄, g) has entailed the concept of confinement. QCD,
the theory of strong interactions, is not perturbative at
large distances. Thus, the confinement itself can not be
treated perturbatively. There are reasons to believe that
the partons confined inside hadrons may not survive colli-
sions between heavy nuclei at relativistic energies [1]. One
of the most interesting predictions of QCD at high temper-
ature is the transition from the confined/chirally broken
phase to the deconfined/chirally symmetric state of quasi-
free quarks and gluons, the so-called quark–gluon plasma.
At very high temperatures, the bulk properties (e.g., en-
ergy density, pressure, and entropy) of QCD matter seem
to be described by a gas of nearly free quarks and gluons.
However, it is also known that long-range, nonperturba-
tive effects disrupt this simple picture even at fairly high
temperatures [2].

Lattice calculations [3] have provided ample evidence
that the long-distance behavior of the high-temperature
phase is characterized by the propagation of color-singlet
objects like multiquark structures. The determination of
the plasma screening length shows evidence of a kind of
correlation in the quark–gluon plasma at all temperatures.
Now what these structures are and how they show up is
not yet theoretically clear. Quite some time ago, an in-
dication was made as a “precursor” to the confinement
property of QCD by Amati and Veneziano [4] where the
cascading and fragmenting partons produced in hadronic
collisions rearrange themselves into color-singlet clusters
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that ultimately evolve into hadrons [5,6]. These consid-
erations convince us that it is important to incorporate
the dynamic requirement of color singletness of the quark
matter to take into account such interactions that “tun-
nel” into hadronic matter phase space [6].

The purpose of the present study is to reconsider the
statistical themodynamical description of quantum gases
consisting of quarks and antiquarks in such a way that the
underlying symmetry can amount to reordering of thermo-
dynamic potential in terms of the color-singlet multiquark
modes at any temperatures. We note that the ingredients
of our rather simple calculation have been around for more
than a decade[7–11], but to our knowledge, no one has
checked these dramatic consequences explicitly before.

We begin with the partition function for a quantum
gas, containing quarks and antiquarks within a finite vol-
ume, which can be written as

Z = Tr
(
P̂exp(−βĤ)

)
, (1)

where β = 1/T is the inverse of temperature, Ĥ is the
Hamiltonian of the physical system, and P̂ is the projec-
tion operator with respect to any configuration admitted
by a system. Now, for a symmetry group G (compact Lie
group) having unitary representation Û(g) in a Hilbert
space H, the projection operator can be written as [12]

P̂j = dj

∫
G

dµ(g)χ?
j (g)Û(g) , (2)

where dj and χj are the dimension and the character, re-
spectively, of the irreducible representation j of G. dµ(g) is
the normalized Haar measure in the group G. The symme-
try group associated with the color-singlet configuration
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of the system is SU(NC), NC is the number of color corre-
sponding to fundamental representation. For the SU(NC)
color-singlet configuration, dj = 1 and χj = 1. The ex-
plicit form of the Haar measure corresponding to SU(NC)
can be found in [10] as

∫
SU(NC)

dµ(g) =
1

NC!

(
NC−1∏
c=1

∫ π

−π

dθc

2π

)
[

NC∏
i<k

(
2 sin

θi − θk

2

)2
]

, (3)

where θl is a class parameter obeying the periodicity con-
dition

∑NC
l=1 θl = 0 (mod2π), which ensures that the group

element is SU(NC). Now the partition function for the sys-
tem becomes

Z =
∫

SU(NC)
dµ(g)Tr

(
Û(g)exp(−βĤ)

)
. (4)

The Hilbert space H of the composite system has the
structure of a tensor product of the individual Fock spaces:

H = Hq ⊗ Hq̄ , (5)

where the subscripts q and q̄ denote the quark and anti-
quark. Now the trace involved in (4) decomposes into the
product of two traces as

Z =
∫

SU(NC)
dµ(g) Tr

(
Ûq(g)exp(−βĤq)

)
Tr
(
Ûq̄(g)exp(−βĤq̄)

)
. (6)

The traces involved in (6) can now be evaluated by the
use of the known results for fermions (for details, see [10]),
yielding

Z =
∫

SU(NC)
dµ(g) exp (Θ) , (7)

with

Θ = tr
[
ln
(
1 + eiθce−β(εqα−µq)

)
+ ln

(
1 + e−iθce−β(εq̄α−µq̄)

) ]
, (8)

where the trace indicates the summation over color (c),
flavor (q), spin (s) and single-particle states (α) with εα =√

p2
α + m2. µq and µq̄ are, respectively, quark and anti-

quark chemical potential. In (8) one can replace εq̄ by εq,
and µq̄ by −µq. It is worth noting here that (7) repre-
sents the general structure of the color-projected parti-
tion function that exists in the literature [7–11], and de-
pending upon the nature of the problem, it has been uti-
lized accordingly. For convenience, we make a substitution
ξq = −iβµq and after a little algebra, (8) becomes

Θ = ln
{∏

α

NC∏
c

Nf∏
q

Ns∏
s

[
e−βεqα ×

(2 cosh βεqα + 2 cos(θc + ξq))
]}

. (9)

where Nf and Ns are the numbers for flavor and spin de-
grees of freedom, respectively. Upon substitution of (9)
into (7), we get, for a finite volume,

Z =
∏
α

∫
SU(NC)

dµ(g)
{ NC∏

c

Nf∏
q

Ns∏
s

[
e−βεqα ×

(2 cosh βεqα + 2 cos(θc + ξq))
]}

. (10)

We would like to point out that the product over α is
written outside the group integration without any loss of
generality. For exact flavor symmetry, (10) can be written
as

Z =
∏
α

∫
SU(NC)

dµ(g)
{ NC∏

c

[
e−βεα ×

(2 cosh βεα + 2 cos(θc + ξ))
]2Nf

}
. (11)

For NC = 3 and Nf = 2, the above equation becomes

Z =
∏
α

∫
SU(3)

dµ(g)
{

212e−12βεα

× [cosh βεα + cos (θ1 + ξ)]4

× [cosh βεα + cos (θ2 + ξ)]4

× [cosh βεα + cos (θ1 + θ2 − ξ)]4
}

, (12)

with the measure corresponding to SU(3) color symmetry
obtained from (3) as∫

SU(3)
dµ(g) =

8
3π2

∫ π

−π

dθ1

∫ π

−π

dθ2 sin2 θ1 − θ2

2

× sin2 θ1 + 2θ2

2
sin2 2θ1 + θ2

2
, (13)

where we have made use of the periodicity condition∑NC=3
l=1 θl = 0. Substituting (13) into (12), and performing

the several hundred elementary integrations in the group
space, one can write the color-singlet thermodynamic po-
tential for finite system as

Ω = − 1
β

∑
α

ln
[
1 + M + B

]
, (14)

where M corresponds to mesonic modes and is given as

M = 16e−2βεα + 136e−4βεα + 816e−6βεα + 1616e−8βεα

+ 4941e−10βεα + 6160e−12βεα + 4941e−14βεα

+ 1616e−16βεα + 816e−18βεα + 136e−20βεα

+ 16e−22βεα + e−24βεα , (15)

whereas those of baryonic (antibaryonic) modes are ob-
tained as

B = 20e−3β(εα∓µ) + 180e−2βεα e−3β(εα∓µ)

+ 816e−4βεα e−3β(εα∓µ) + 2320e−6βεα e−3β(εα∓µ)
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+ 3020e−8βεα e−3β(εα∓µ) + 3020e−10βεα e−3β(εα∓µ)

+ 2320e−12βεα e−3β(εα∓µ) + 816e−14βεα e−3β(εα∓µ)

+ 180e−16βεα e−3β(εα∓µ) + 20e−18βεα e−3β(εα∓µ)

+ 50e−6β(εα∓µ) + 240e−2βεα e−6β(εα∓µ)

+ 570e−4βεα e−6β(εα∓µ) + 800e−6βεα e−6β(εα∓µ)

+ 570e−8βεα e−6β(εα∓µ) + 240e−10βεα e−6β(εα∓µ)

+ 50e−12βεα e−6β(εα∓µ)

+ 20e−9β(εα∓µ) + 40e−2βεα e−9β(εα∓µ)

+ 40e−4βεα e−9β(εα∓µ) + 20e−6βεα e−9β(εα∓µ)

+ e−12β(εα∓µ) . (16)

In the infinite volume limit, the
∑

α in (14) can be replaced
by integration as

Ω = − 1
β

∫
d3p

(2π)3
ln [1 + M + B] . (17)

It should be noted here that in (15) and (16), one needs
to replace εα by just ε.

Equation (17) clearly shows that the color projection
amounts to reordering the thermodynamic potential in
terms of Boltzmann factors for the colorless multiquark
(mesonic/baryonic) modes at any temperature. The
mesonic modes can be seen in (15) to have quark con-
tent qnq̄n, n = 1, · · · , 12 with energy 2nε. On the other
hand, baryonic (antibaryonic) modes are very transparent
from (16), with quark content qm+NCB q̄m (q̄m+NCB̄qm);
B(B̄) = 1, 2, 3, 4, · · · is the baryon (antibaryon) number,
m = 0, 1, · · · (restricted by the values of B(B̄); see (16)),
and NC = 3. In general, the energy of these baryonic (an-
tibaryonic) modes can be written as 2mε + BNC(ε ∓ µ).
The maxim values of n, m, and B(B̄) depend on the num-
ber of flavor chosen (see, e.g., (11)). The interesting feature
of this color projection is that the chemical potential, µ,
always appears with the color factor NC in the baryonic
Boltzmann factor. Of course, these color-singlet structures
are not bound states in a real sense; rather, we should say
that they are a combination of constituent quarks only.

Under a suitable confining mechanism, we hope that
these multiquark colorless structures could evolve into
color-singlet hadrons in the low-temperature limit. This
is in accord with the “preconfinement” property of QCD
noted by Amati and Veneziano [4] quite some time ago. In
the mesonic sector, n = 1 corresponds to low-lying mesons
(the first term in (15)) whereas n > 1 represents exotic
mesons. It is to be noted that the factor of 16 appear-
ing in the first term in (15) can amount to 16 low-lying
degenerate mesonic states corresponding to SU(2) flavor
and SU(2) spin symmetry. We would like to point out
here that the color-singlet thermodynamic potential can
possibly extract mesonic states in which pions, being the
pseudoscalar Goldstone boson, could be the exception. On
the other hand, m = 0, B(B̄) = 1, and NC = 3 amount to
low-lying baryons (the first term in (16)) whereas m > 1,
B(B̄) ≥ 1, and NC = 3 correspond to exotic baryons.
The factor of 20 appearing in the first term in (16) rep-
resents 20 baryonic and 20 antibaryonic states. This is
also quite consistent with SU(2) flavor and SU(2) spin

symmetry in which nucleons and deltas are degenerate,
and their total degeneracy is 40. It is also apparent that,
as is expected physically, the low-lying hadronic modes
play a dominant role at low temperature, while the ex-
otic hadronic modes/collective modes are most relevant
at high temperature. In a nonsupersymmetric tachyonless
string model, Kutasov and Seiberg [13] suggested that the
number of fermionic and bosonic states must approach
each other as increasingly massive states are included in
the hadronic density of states. On the basis of this result,
Freund and Rosner [14] have proposed that there must ex-
ist exotic mesons and baryons with similar quark content
to that discussed above to have equalization of mesonic
and baryonic density of states, since the observed states
are deficient at a higher mass range (for the meson, it is
1.3 GeV and for baryon, 2 GeV). In the low-temperature
limit, the existence of these exotic hadrons is highly im-
probable, but they may start to appear with an increase
in temperature. In a model-dependent calculation [15], the
limiting temperature has been found to vary with the mass
of the hadrons.

As was discussed above, the multiquark color-singlet
modes become very relevant at very high temperatures.
The estimation of energy density and pressure [9,11] of
the system at moderately high temperatures shows de-
viation from its ideal gas behavior. In this context, it
has been suggested [3] that the long-distance behavior of
the high-temperature phase can be characterized by the
propagation of color-singlet multiquark structures. In this
simple-minded calculation, such color-singlet objects ap-
pear very cleanly at high temperature. Now the question
becomes: What do these modes correspond with at high
temperature? As we see, these multiquark objects are not
real bound states, but just a combination of constituent
quarks indistinguishable from the color-singlet hadrons at
low temperature. This could lead to a kind of analog of
the high-temperature phase to that of low temperature,
and we naively speculate that if there is a phase transi-
tion in light-quark QCD, it may be of a chiral character
rather than a deconfinement character. However, this issue
requires a more careful investigation.

Finally, we would like to comment here on one impor-
tant aspect of the three-flavor case. If one considers three
flavors (for which calculation will be cumbersome), there
will be a structure consisting of 6 quarks (two of each
flavor) which could be of particular interest to those in
the community searching for strangelets in heavy-ion col-
lisions. This particular structure is known as quark-alpha
(Qα) in the literature [16] and could be a probable candi-
date for detecting strangelets in heavy ion collisions.
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